Что значит 3 единицы второго разряда 2 единицы третьего — объяснение и примеры

Все о системах счисления в информатике

Алгоритмы перевода в системы счисления по разным основаниям

Алгоритм перевода чисел из любой системы счисления в десятичную

  1. Представить число в развернутой форме. При этом основание системы счисления должно быть представлено в десятичной системе счисления.
  2. Найти сумму ряда. Полученное число является значением числа в десятичной системе счисления.

Алгоритм перевода целых чисел из десятичной системы счисления в любую другую

  1. Последовательно выполнять деление данного числа и получаемых целых частных на основание новой системы счисления до тех пор, пока не получится частное, меньше делителя.
  2. Полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления.
  3. Составить число в новой системе счисления, записывая его, начиная с последнего остатка.

Алгоритм перевода правильных дробей из десятичной системы счисления в любую другую

  1. Последовательно умножаем данное число и получаемые дробные части произведения на основание новой системы счисления до тех пор, пока дробная часть произведения не станет равна нулю или будет достигнута требуемая точность представления числа.
  2. Полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления.
  3. Составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Алгоритм перевода произвольных чисел из десятичной системы счисления в любую другую

Перевод произвольных чисел, т.е. содержащих целую и дробную часть, осуществляется в два этапа:

  1. Отдельно переводится целая часть.
  2. Отдельно переводится дробная.
  3. В итоговой записи полученного числа целая часть отделяется от дробной запятой.

Перевод чисел из двоичной системы счисления в систему счисления с основанием q=2n

Для облегчения решения задач заполним следующую таблицу: 

 Десятичная  Двоичная  Восьмеричная  Шестнадцатеричная
1 1 1
2 10 2
3 11 3
4 100  4 4
5 101 5 5
6 110  6
7 111 7 7
8 1000 10 8
9 1001 11  9
10 1010 12  A
11 1011 13 
12 1100 14 
13 1101 15 
14 1110 16 
15 1111 17 

Если основание q-ричной системы счисления является степенью числа 2, то перевод чисел из q-ричной систему счисления в 2-ичную и обратно можно проводить по более простым правилам.

  1. Двоичное число разбить справа налево на группы по n в каждой.
  2. Если в левой последней группе окажется меньше n разрядов, то её надо дополнить слева нулями до нужного числа разрядов.
  3. Рассмотреть каждую группу как n-разрядное двоичное число и записать её соответствующей цифрой в системе счисления с основанием q=2n

Двоичная арифметика

Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным правилам. 

Сложение

Рассмотрим сложение чисел в двоичной системе счисления

В основе лежит таблица сложения одноразрядных двоичных чисел: 
0+0=00+1=11+0=11+1=101+1+1=11

Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или больше основания системы счисления. Для двоичной системы счисления эта величина равна двум. Сложение многоразрядных двоичных чисел происходит в соответствие с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов с старшие. 

Для двоичной системы счисления эта величина равна двум. Сложение многоразрядных двоичных чисел происходит в соответствие с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов с старшие. 

Вычитание

Рассмотрим вычитание двоичных чисел. В основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначается 1 с чертой. 
0-0=00-1=111-0=11-1=0

Умножение

В основе умножения лежит таблица умножения одноразрядных двоичных чисел: 
0*0=00*1=01*0=01*1=1

Умножение многоразрядных двоичных чисел происходит в соответствии с приведенной таблицей умножения по обычной схеме, применяемой в десятичной системе счисления, с последовательным умножением множимого на очередную цифру множителя. 

Деление

Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления.

Что такое системы счисления

Системой счисления называется система записи чисел с помощью знаков по определенным правилам.

Символы, с помощью которых записываются числовые значения, обычно называют цифрами, а все вместе знаки системы счисления образуют алфавит. Количество знаков, используемых для обозначения чисел, называется основанием системы счисления.

Приведем примеры чисел систем счисления с различным основанием.

Основная десятичная система, привычная и общеупотребимая, имеет десять символов для обозначения всех чисел, то есть ее основание равно 10. Символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 представляют собой цифры. После цифры 9 в числовом ряду идет двузначное 10. При этом происходит сдвиг разрядной сетки числа влево на один разряд.

Десятичная система использует арабские цифры. Предположительно арабская система записи чисел возникла в Индии. Индийскую систему записи чисел описал Аль Хорезми в своем трактате «Об индийском счете».

Рис. 1. Портрет Аль Хорезми.

Системы счисления в информатике не ограничиваются применением десятичных цифр, самыми распространенными системами являются двоичная, восьмеричная и шестнадцатеричная системы счисления.

В двоичной системе счисления все просто. Основание равно 2. Обозначение чисел выполняется только двумя символами 0 и 1.

Восьмеричная система использует 8 знаков для обозначения чисел: 0, 1, 2, 3, 4, 5, 6, 7

И числовой ряд восьмеричных чисел выглядит так: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12 … Следует обратить внимание, что после 7 идет двузначное число 10, так как знаков всего восемь и происходит сдвиг разрядной сетки

Шестнадцатеричная система имеет основание 16. Она применяет в качестве символов арабские цифры от 0 до 9 и затем буквы латинского алфавита A, B, C, D, E, F. В числовом ряду шестнадцатеричных чисел после 9 идет А, а после F идет 10.

Тогда возникает вопрос, как определить, в какой системе счисления, например число 107. Цифры 0, 1, 7 используются как в восьмеричной, так и в десятичной и шестнадцатеричной системе счисления. Для того чтобы различать системы, существует специальное обозначение систем счисления. Числа помечаются индексом с основанием системы. Так, 1078 – это восьмеричное число, 10710 – десятичное число, 10716 – шестнадцатеричное число.

в истории существуют примеры использования и других систем счисления. Так, некоторые коренные культуры Африки и Австралии используют двоичные и троичные системы. Индейцы Юки пользуются четверичной системой счисления, пятеричная система счисления распространена больше (по количеству пальцев на руке), ее элементы встречаются у древних персов и ацтеков, у индейцев племени Таманакос. У древних Шумеров использовалась шестидесятеричная система счисления, разбивка часа на 60 минут и минуты на 60 секунд, вероятно, отголоски этой системы.

Разбор 10 задания ОГЭ по информатике

Актуальное

Решение задания 10.3. Демонстрационный вариант ОГЭ 2022 г.

Среди приведённых ниже трёх чисел, записанных в различных системах счисления, найдите максимальное и запишите его в ответе в десятичной системе счисления. В ответе запишите только число, основание системы счисления указывать не нужно.

2316, 328, 111102

Решение:

10
23 = 2*161 + 3*16 = 35

Первое число = 35.

10
32 = 3*81 + 2*8 = 26

Второе число = 26.

11110 = 1*24 + 1*23  + 1*22  + 1*21 + 0 = 30

Треть число = 30. Наибольшее число — 35

Ответ: 35

Тренировочные

Решение задания 10.1:

Переведите число 120 из десятичной системы счисления в двоичную систему счисления. В ответе укажите двоичное число.

Решение: 

      рез-т     остаток
120 |   60   |  0
60  |   30   |  0
30  |   15   |  0
15  |    7   |  1
7   |    3   |  1
3   |    1   |  1

Перепишем все остатки снизу вверх, не забыв последний делитель 1!
Получим двоичное число: 1111000

Ответ: 1111000

Решение задания 10.2:

Переведите двоичное число 1101010 в десятичную систему счисления. В ответе укажите десятичное число.

Решение: 

6432168421
1  1  0  1  0  1  0

Рассчитаем сумму тех степеней двоек, которые находятся над единичными разрядами:

64 + 32 + 8 + 2 = 106

Получим десятичное число: 106

Ответ: 106

Решение задания 10.4:
Сколько единиц в двоичной записи шестнадцатеричного числа 2AC116?

Решение:

  • В шестнадцатеричной с-ме счисления числа от 10 до 15 представлены буквами латинского алфавита: A-10, B-11, C-12, D-13, E-14, F-15.
  • Необходимо вспомнить двоичные коды чисел от 1 до 15 (см. теорию выше на странице), так как для перевода 16-ричного в двоичную с-му достаточно каждую цифру отдельно записать в виде четверки двоичных цифр (тетрады):
 2     A     C     1
0010  1010  1100  0001

в этой записи 6 единиц

Результат: 6

Подробный разбор 10 задания с объяснением просмотрите на видео:

Видео youTube

Решение задания 10.4:
Сколько существует целых чисел x, для которых выполняется неравенство 2A16<x<618?
В ответе укажите только количество чисел.

Решение:

2A16 = 2*161+10*16 = 32 + 10 = 42

Переведем 618 в десятичную с-му счисления:

618 = 6*81+1*8 = 48 + 1 = 49

Получим сравнение:

42 

Поскольку в задании дважды строгое сравнение (), то количество целых, удовлетворяющих условию:

49 - 42 - 1 = 6

Проверим: 43, 44, 45, 46, 47, 48

Результат: 6

Подробное решение данного 1 задания из демоверсии ЕГЭ 2018 года смотрите на видео:

Видео youTube

Решение задания 10.5:Вычислите значение выражения AE16 – 1916.
В ответе запишите вычисленное значение в десятичной системе счисления.

Решение:

1 0
A E = 10*161 + 14*16 = 160 + 14 = 174

* A16 соответствует числу 10 в десятичной системе счисления 
* E16 соответствует числу 14 в десятичной системе счисления
1 0
19 = 1*161 + 9*16 = 16 + 9 = 25

Найдем разность:

174 - 25 = 149

Результат: 149

Классификация систем счисления

Системы счисления подразделяются на позиционные и непозиционные.

Позиционные системы счисления

Позиционные системы счисления (СС) — это системы счисления, в которых количественный эквивалент каждой цифры (её вес) зависит от ее положения (позиции) в записи числа. Путем долгого развития человечество пришло к созданию позиционного принципа записи чисел, который состоит в том, что каждая цифра, содержащаяся в записи числа, занимает определенное место, называемое разрядом. Отсчет разрядов производится справа налево. Единица каждого следующего разряда всегда превосходит единицу предыдущего разряда в определенное число раз. Это отношение носит название основание системы счисления (у непозиционных систем счисления понятия «разряда» и «основания» отсутствуют).Например:число 237 состоит из 3 цифр. Понятно, что отдельно взятая цифра 7 больше чем цифра 2. Однако, в составе числа, двойка стоит на позиции сотен, а семёрка — на позиции единиц, поэтому количественное представление двойки — две сотни, или двести, а семёрка — всё та же семь.Многие, кроме десятичной СС, о других позиционных системах не имеют представления, хотя и часто ими пользуются. Например: 

  1. шестидесятиричная (Древний Вавилон) — первая позиционная система счисления. До сих пор при измерении времени используется основание равное 60 (1 мин = 60 с, 1 ч = 60 мин);
  2. двенадцатеричная система счисления (широкое распространение получила в XIX в. Число12 — «дюжина»: в сутках две дюжины часов. Счет не по пальцам. а по суставам пальцев. На каждом пальце руки, кроме большого, по 3 сустава — всего 12;

В настоящее время наиболее распространенными позиционными системами счисления являются десятичная, двоичная, восьмеричная и шестнадцатеричная.Общее свойство всех позиционных систем счисления: при каждом переходе влево (вправо) в записи числа на один разряд величина цифры увеличивается (уменьшается) во столько раз, чему равно основание системы счисления.Достоинства позиционных систем счисления:

  • в позиционных системах счисления устранены все недостатки непозиционных:
  • в них можно записать любое число (как натуральное, таки действительное);
  • запись чисел компактна и удобна;
  • благодаря поразрядной организации записи чисел с ними легко проводить математические операции.

Непозиционные системы счисления

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. Например: Римская система счисления.Из многочисленных представителей этой группы в настоящее время сохранила свое значение лишь римская система счисления, где для обозначения цифр используются латинские буквы:

V X L С D М
1 5 10 50 100 500 1000

С их помощью можно записывать натуральные числа. Например, число 1995 будет представлено, как MCMXCV (М-1000,СМ-900,ХС-90 и V-5).Правила записи чисел в римской системе счисления:

  • если большая цифра стоит перед меньшей, они складываются, например: VI – 6 (5+1);
  • если меньшая цифра стоит перед большей, то из большей вычитается меньшая, причем в этом случае меньшая цифра уже повторяться не может, например: XL — 40 (50-10), XXL – нельзя;
  • цифры М, С, Х, I могут повторяться в записи числа не более трех раз подряд;
  • цифры D, L, V могут использоваться в записи числа только по одному разу.

Например, запись XXX обозначает число 30, состоящее из трех цифр X, каждая из которых, независимо от места ее положения в записи числа, равна 10. Запись MCXX1V обозначает 1124, а самое большое число, которое можно записать в этой системе счисления, это число MMMCMXCIX (3999). Для записи еще больших чисел пришлось бы вводить все новые обозначения. По этой причине, а также по причине отсутствия цифры ноль, римская система счисления не годится для записи действительных чисел.Таким образом, можно констатировать следующие основные недостатки непозиционных систем счисления:

  • в них нельзя записать любое число;
  • запись чисел обычно громоздка и неудобна;
  • математические операции над ними крайне затруднены.

Уравнения

Вспомните, как называется равенство, которое содержит неизвестное число?

Правильно, уравнение!

Неизвестное число мы обозначаем латинской буквой. Я знаю много латинских букв. А вы?

Буквы латинского алфавита 

a

b

c

d

k

x

у

Из чисел 2, 5, 8, 11 выберите для каждого уравнения такое значение х, у, b, а, при котором получится верное равенство (подбором).

18-х=10

2+у=7

b-9=2

a+8=10

Четвертый секрет: «Пользуйтесь моими секретными формулами! Они помогут вам без ошибок решать уравнения».

Есть уравнения, которые подбором решить сложно. Например, у+6=92 или а-20=31.

Нам на помощь придут секретные формулы!

С1=С-С2

С2=С-С1

У=Р+В

В=У-Р

Чтобы их расшифровать, нужно вспомнить, как называются числа при сложении, при вычитании.

С1 – первое слагаемое

С2 – второе слагаемое

С – сумма

У – уменьшаемое

В – вычитаемое

Р – разность

!Зная эти правила, вы будете решать уравнения без ошибок.

Решим уравнение с объяснением: у+6=92

Это уравнение с неизвестным первым слагаемым. Применяем мою секретную формулу. С1=С-С2

Для нахождения неизвестного слагаемого из значения суммы вычтем известное слагаемое: 92-6.

у=92-6

у=86

Сделаем проверку. Слово «проверка» заменим чертой (так гораздо быстрее). Вместо у (игрек) запишем число 86. Найдем значение выражения 86+6. В левой части уравнения получим 92. В правой части – тоже 92. Делаем вывод: «Уравнение решили верно». Запись решения будет выглядеть так:

у+6=92

у=92-6

у=86

86+6=92

92=92

Поработаем еще над одним уравнением: а-20=31

В нем неизвестно уменьшаемое. Применяем секретную формулу У=Р+В.

Для нахождения неизвестного уменьшаемого к значению разности прибавим вычитаемое.

а-20=31

а=31+20

а=51

51-20=31

31=31

Объясни, как выполнили проверку.

window.yaContextCb.push(()=>{ Ya.Context.AdvManager.render({ renderTo: ‘yandex_rtb_R-A-483726-24’, blockId: ‘R-A-483726-24’ }) })

Задание 4. Ребята, применяя формулу В=У-Р, попробуйте самостоятельно решить уравнение 74-с=50.

Правильный ответ в конце урока!

Вы прекрасно потрудились. Напоследок предлагаю вам решить задачу на смекалку.

Задание 5. «У Незнайки есть карандаши, ручки и фломастеры. Карандашей больше, чем ручек, но меньше, чем фломастеров. Каких принадлежностей для рисования у Незнайки больше всего?».

Ответ в конце урока!

Вот и подошел к концу наш урок. Надеюсь, что вы, ребята, запомнили мои математические секреты. Они обязательно помогут вам овладеть интересной и увлекательной наукой математикой. Как вы думаете, какой подсказкой должен воспользоваться Незнайка, чтобы решить пример, о котором он написал в письме? До скорой встречи!

Ответы на задачи:

Задание 1.

1. а) 23, б) 55, в) 70.

2. 86, 90, 41.

3. 35=30+5

91=90+1

86=80+6

4. 90, 80, 70, 60, 50, 40, 30, 20, 10

Задание 2.

55, 80, 65, 16, 26, 24

Задание 3.

10+8=18

10+12=22

10+26=36

Задание 4.

74-с=50

с=74-50

с=24

74-24=50

50=50

Задание 5.

У Незнайки больше всего фломастеров.

Двоичная (бинарная) система счисления

Двоичная (или бинарная) система счисления — это позиционная система счисления с основанием 2.

Принцип считать двумя цифрами берёт своё начало ещё в Древнем Китае. Но развитие современной бинарной системы началось в XVII веке, а применение нашлось только в середине XX века.

История двоичной системы счисления

В 1605 году английский астроном и математик Томас Хэрриот описал двоичное представление чисел, а философ Фрэнсис Бэкон создал шифр из двух символов — A и B.

В 1670 году испанский богослужитель Хуан Карамюэль-и-Лобковиц опубликовал представление чисел в разных системах счисления, в том числе и двоичной.

Но самым значительным событием стали работы немецкого математика Готфрида Лейбница, который в 1703 году описал двоичную арифметику — математические операции с двоичными числами.

В 1838 году американский изобретатель Сэмюэл Морзе создал одноимённый шифр, содержащий два символа: «точка» и «тире». Их можно было передавать по телеграфу в виде длинных и коротких сигналов. Азбука Морзе не была бинарной системой в строгом смысле слова, но двоичный принцип впервые показал свою значимость.

В 1847 английский математик Джордж Буль изобрёл «булеву алгебру», в которой было два понятия («ложь» и «истина»), а также ряд логических законов.

В 1937 году американский инженер Клод Шеннон объединил бинарный принцип, булеву логику и электрические схемы и ввёл понятие «бит» — минимальное количество информации:

  •  — ложь — нет тока (0 бит);
  • 1 — истина — есть ток (1 бит).

С тех пор двоичную (бинарную) систему счисления стали использовать все ЭВМ, в том числе и современные компьютеры.

Числа в двоичной системе счисления

Двоичное число — это число, состоящее из двоичных цифр. А у нас их всего две. Принято обозначать и 1, но, как показала практика, это могут быть и два разных значения: «лампа горит» и «лампа не горит», «ток» и «нет тока» и так далее.

В следующей таблице приведены числа в двоичной системе (зелёный столбец) и соответствующие им числа в других часто используемых системах счисления — восьмеричной, десятичной и шестнадцатеричной.


Изображение: Лев Сергеев для Skillbox Media

Преимущества и недостатки двоичной (бинарной) системы счисления

Явные минусы двоичной системы обусловлены тем, что на интуитивном уровне людям она чужда — в отличие, например, от десятичной. И это — первый недостаток. Пройдёмся по остальным:

Длинная запись, неудобство с большими числами. Возьмём, к примеру, обозначение белого цвета в RGB-палитре: 25510, 25510, 25510 (здесь и далее нижний индекс указывает основание системы — двоичная, десятичная и так далее). Значения цветов принято записывать в шестнадцатеричной системе счисления (FF16, FF16, FF16). Если перевести это в бинарный вид, получится громоздко и непонятно:


Изображение: Лев Сергеев для Skillbox Media

  • Долгое время ручных вычислений.
  • Не применяется в повседневной жизни (если, конечно, вы не компьютер).

А вот для ЭВМ бинарочка — как родная. И отсюда следуют её плюсы:

  • Позиционная система, имеет разряды.
  • Применимы арифметические действия.
  • Можно построить логику.
  • Подходит для шифровки данных.
  • Родной язык компьютерных систем.

Распространенные системы счисления в информатике

Практически все системы, которые используют в компьютерной технике, — позиционные и однородные. Как правило, у них четное основание, которое соответствует какой-либо из степеней двойки. Это связано с особенностями хранения данных в памяти компьютера. Рассмотрим три наиболее популярных в информатике системы счисления: двоичную, восьмеричную и шестнадцатеричную.

Двоичная. Это система с основанием 2 и алфавитом, который состоит всего из двух цифр — 0 и 1. Необходимость использовать двоичную систему появилась из-за того, как компьютеры представляют информацию: в виде бит. Бит может принимать только значение «0» или «1» — «тут нет единицы информации» или «тут есть единица информации».

  • 0 означает ноль, отсутствие информации.
  • 1 означает единицу, например записанную в какую-то ячейку памяти.
  • Цифры 2 в системе нет. Если число достигает значения 2, оно переходит в другой разряд и записывается как 10 — одна двойка и ноль единиц. Соответственно, число 3 будет записываться как 11 — одна двойка и одна единица.
  • Дальше разряды увеличиваются по тому же принципу. Число 4 — это 100, то есть две двойки и 0 единиц. Число 8 — 1000, и так далее. Каждая новая степень двойки — новый разряд.

Напрямую работать с двоичным, или бинарным кодом разработчикам приходится редко

Но для общего понимания важно знать, как устроена двоичная система. Именно в таком виде на самом глубоком уровне хранятся данные в компьютере — как последовательности из нулей и единиц

Восьмеричная. Эту систему используют чуть реже, чем двоичную и шестнадцатеричную. Чаще всего ее упоминание можно встретить при работе с низкоуровневыми языками программирования, которые близки к «железу» и способны обрабатывать данные напрямую. Компьютеры объединяют части бинарного кода в блоки по 8 двоичных цифр — байты. Отсюда появилась и необходимость работать с восьмеричной системой.

  • Основа системы счисления — 8. Это значит, что от 0 до 7 цифры идут как обычно, а когда число доходит до 8, начинается другой разряд и число записывается как 10.
  • Соответственно, число 9 будет записываться как 11, а число 10 — как 12.
  • Число 16 в восьмеричной системе записывается как 20, потому что шестнадцать — это два раза по восемь. И так далее.
  • Число 64 в восьмеричной системе будет выглядеть как 100, потому что это восемь раз по восемь.

Шестнадцатеричная. С этой системой счисления сталкиваются не только разработчики, но и, например, дизайнеры — в ней кодируются цвета RGB. Еще в этой системе записываются коды символов во многих кодировках. Основание шестнадцатеричной системы — число 16. Оно больше десяти, поэтому в алфавите появляются дополнительные цифры, которые обозначают буквами.

  • От 0 до 9 цифры идут как обычно. Но на десяти разряд еще не меняется, поэтому для обозначения десятки нужна новая цифра. В качестве этой «цифры» используют латинскую букву A.
  • Соответственно, «цифра» 11 — это B, 12 — C, и так далее до F, которая обозначает «цифру» 15.
  • Когда счет доходит до шестнадцати, разряд меняется. Следующее число после F в шестнадцатеричной системе — 10.
  • Числа в шестнадцатеричной системе выглядят меньше, чем в десятичной. Например, 100 в шестнадцатеричной системе — это 16 раз по 16, то есть 16 в квадрате. В десятичной системе это число 256.
  • Цифры в виде букв могут встречаться в начале, конце или середине числа. Например, 1A — это 26. Единица обозначает один раз по шестнадцать, а A — «цифру» десять.

Разряды чисел

Каждая цифра в записи многозначного числа занимает определённое место — позицию. Место (позицию) в записи числа, на котором стоит цифра, называют разрядом.

Разряд числа — это позиция (место) цифры в записи числа.

Счёт разрядов идёт справа налево. То есть, первая цифра справа в записи числа называется цифрой первого разряда, вторая цифра справа — цифрой второго разряда и т. д. Например, в первом классе числа  148 951 784 296,  цифра  6  является цифрой первого разряда,  9  — цифра второго разряда,  2  — цифра третьего разряда:

Единицы, десятки, сотни, тысячи и т. д. иначе ещё называют разрядными единицами:

  • Единицы называют  единицами первого разряда  (или простыми единицами) и пишутся на  первом  месте справа.
  • Десятки —  единицами второго разряда  и пишутся в числе на  втором  месте справа.
  • Сотни —  единицами третьего разряда  и пишутся на  третьем  месте справа.
  • Единицы тысяч —  единицами четвёртого разряда  и пишутся на  четвёртом  месте справа.
  • Десятки тысяч —  единицами пятого разряда  и пишутся на  пятом  месте справа.
  • Сотни тысяч —  единицами шестого разряда  и пишутся в числе на  шестом  месте справа и так далее.

Каждые три разряда, следующие друг за другом, составляют класс. Первые три разряда: единицы десятки и сотни — образуют класс единиц (первый класс). Следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч — образуют класс тысяч (второй класс). Третий класс будут составлять единицы, десятки и тысячи миллионов и так далее.

Пример. Запишите цифрами число, которое содержит:

1)  37  единиц второго класса и  565  единиц первого класса;

2)  450  единиц второго класса и  9  единиц первого класса;

3)  8  единиц второго класса и  50  единиц первого класса.

Решение:

1)  37 565;

2)  450 009;

3)  8 050.

Все разрядные единицы, кроме простых единиц, называются составными единицами. Так, десяток, сотня, тысяча и т. д. — составные единицы. Каждые  10  единиц любого разряда составляют одну единицу следующего (более высокого) разряда:

10 единиц  =  1 десяток;
10 десятков  =  1 сотня;
10 сотен  =  1 тысяча;
10 тысяч  =  1 десяток тысяч;
10 десятков тысяч  =  1 сотня тысяч;
10 сотен тысяч  =  1 тысяча тысяч (1 миллион);

и так далее.

Любая составная единица по сравнению с другой единицей, меньшей её называется единицей высшего разряда, а по сравнению с единицей, большей её, называется единицей низшего разряда. Например, сотня является единицей высшего разряда относительно десятка и единицей низшего разряда относительно тысячи.

Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, надо отбросить все цифры, означающие единицы низших разрядов и прочитать число, выражаемое оставшимися цифрами.

Например, требуется узнать, сколько всего сотен содержится в числе  6284,  т. е. сколько сотен заключается в тысячах и в сотнях данного числа вместе.

В числе  6284  на третьем месте в классе единиц стоит цифра  2,  значит в числе есть две простые сотни. Следующая влево цифра —  6,  означает тысячи. Так как в каждой тысяче содержится  10  сотен то, в  6  тысячах их заключается  60.  Всего, таким образом, в данном числе содержится  62  сотни.

Цифра    в каком-нибудь разряде означает отсутствие единиц в данном разряде.

Например, цифра  0  в разряде десятков означает отсутствие десятков, в разряде сотен — отсутствие сотен и т. д. В том разряде, где стоит  0,  при чтении числа ничего не произносится:

24 527  — двадцать четыре тысячи пятьсот двадцать семь.

20 507  — двадцать тысяч пятьсот семь.

Понравилась статья? Поделиться с друзьями:
Твой Советник
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: